Distribution Fitting-based Pixel Labeling for Histology Image Segmentation

نویسندگان

  • Lei He
  • L. Rodney Long
  • Sameer Antani
  • George Thoma
چکیده

This paper presents a new pixel labeling algorithm for complex histology image segmentation. For each image pixel, a Gaussian mixture model is applied to estimate its neighborhood intensity distributions. With this local distribution fitting, a set of pixels having a full set of source classes (e.g. nuclei, stroma, connective tissue, and background) in their neighborhoods are identified as the seeds for pixel labeling. A seed pixel is labeled by measuring its intensity distance to each of its neighborhood distributions, and the one with the shortest distance is selected to label the seed. For non-seed pixels, we propose two different labeling schemes: global voting and local clustering. In global voting each seed classifies a non-seed pixel into one of the seed’s local distributions, i.e., it casts one vote; the final label for the non-seed pixel is the class which gets the most votes, across all the seeds. In local clustering, each non-seed pixel is labeled by one of its own neighborhood distributions. Because the local distributions in a non-seed pixel neighborhood do not necessarily correspond to distinct source classes (i.e., two or more local distributions may be produced by the same source class), we first identify the “true” source class of each local distribution by using the source classes of the seed pixels and a minimum distance criterion to determine the closest source class. The pixel can then be labeled as belonging to this class. With both labeling schemes, experiments on a set of uterine cervix histology images show encouraging performance of our algorithm when compared with traditional multithresholding and K-means clustering, as well as state-of-the-art mean shift clustering, multiphase active contours, and Markov random field-based algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

MR Brain Image Analysis by Distribution Learning and Relaxation Labeling - Biomedical Engineering Conference, 1996., Proceedings of the 1996 Fifteenth Southern

This paper addresses the quantification and segmentation in brain tissue analysis by using MR brain scan. It is shown that this problem can be solved by distribution learning and relaxation labeling, an efficient method that may be particularly useful in quantifying and segmenting abnormal brain cases where the distribution of each tissue type may heavily overlap. The new technique utilizes sui...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011